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Abstract 

Background:  LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, 
including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influ‑
ences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density 
and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was 
to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels 
using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC 
using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m−2 (RF5 and RF10) and grid cell sizes of 5, 10, 
15 and 20 m.

Results:  The results show that LiDAR pulse density of 5 pulses m−2 provides metrics with similar prediction accuracy 
for AGC as when using a dataset with 10 pulses m−2 in these fast-growing plantations. Relative root mean square 
errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted 
AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes 
for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this 
system.

Conclusion:  LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations 
with adequate levels of precision and accuracy using 5 pulses m−2 and a grid cell size of 5 m. The promising results 
for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR 
sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient 
forest inventory.
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Background
Atmospheric carbon dioxide concentration [CO2] has 
increased by 40% since pre-industrial times, contributing 

greatly to climate change [1]. Managing the exchange 
of CO2 and other greenhouse gases between the bio-
sphere and the atmosphere is an important strategy for 
mitigating climate change [2]. Forest ecosystems play a 
key role in the global carbon cycle [3–6], since carbon is 
exchanged naturally between forests and the atmosphere 
through photosynthesis, respiration, decomposition and 
combustion [7]. Forest management can therefore alter 

Open Access

*Correspondence:  carlos_engflorestal@outlook.com 
1 Department of Natural Resources and Society, College of Natural 
Resources, University of Idaho, (UI), 875 Perimeter Drive, Moscow, ID 
83843, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13021-017-0081-1&domain=pdf


Page 2 of 16Silva et al. Carbon Balance Manage  (2017) 12:13 

the amount and magnitude of CO2 exchange between 
forests and the atmosphere, thus serving as an effective 
and economical means to help mitigate climate change 
[8].

Forest plantations cover approximately 1% of the trop-
ics (40–50 million  ha) and have great capacity to store 
carbon [9], both during growth and in the form of dura-
ble forest products after harvest. Forest plantations play 
a role in terms of carbon in reducing further degradation 
and deforestation of natural forests, as well as providing 
alternative to the fossil fuels. Eucalyptus spp. are fast-
growing with desirable wood qualities and are, therefore, 
a preferred species in plantations; they are widely grown 
in the tropics and subtropics, especially in Brazil, India, 
and China [10]. At present, Eucalyptus is grown on more 
than 20 million  ha of plantation land around the world 
[11]. Eucalyptus is the dominant hardwood plantation 
species in Brazil, where it has been planted on more 
than 3.1 million hectares, accounting for approximately 
57% of the country’s total reforested area [12]. Most 
Eucalyptus plantations are managed in short rotations 
(6–8  years) and the mean annual increment is approxi-
mately 40 m3 ha−1 year−1 roundwood, ranging from 25 to 
60 m3 ha−1 year−1 depending on the level of environmen-
tal stress [13]. Quantifying the substantial roles of fast-
growing Eucalyptus plantation on AGC stores, as sources 
of carbon emissions and as carbon sinks, has become key 
to understanding the global carbon cycle [6, 14].

Forest inventory in Eucalyptus plantations is usually 
conducted annually to monitor forest growth [13]. The 
aboveground carbon (AGC) production of Eucalyptus 
spp. is extremely high compared to natural forests espe-
cially when trees are grown for timber production and 
therefore contributes strongly to the reduction of atmos-
pheric CO2 [9, 14, 15]. Remote sensing of forest AGC has 
received increased attention during the last decade due 
to its relevance to global carbon cycle modelling and to 
international programs aimed at reducing greenhouse 
gas emissions [15, 16]. LiDAR (Light Detection and Rang-
ing) is a powerful remote sensing technology for predict-
ing forest attributes [17], since it enables precise mapping 
of the landscape distribution of forest attributes at high 
spatial resolution and in a relatively short time compared 
to conventional methods [15]. In particular, many studies 
showed good relationships between parameters derived 
from airborne LiDAR data and forest measures such as 
canopy height [18–20], basal area [21, 22], stem volume 
[23–26] and aboveground carbon [7, 15, 27–31].

While airborne LiDAR is increasingly used to map 
forest attributes at the landscape level, multitemporal 
LiDAR data acquisition over large areas is expensive [32]. 
Many factors influence the cost of LiDAR data, including 
normal cost variables, such as project size, location, and 

deliverables, as well as market variables, such as compe-
tition amongst LiDAR vendors. One of the most impor-
tant variables affecting the cost of acquisition of LiDAR 
data is pulse density [33, 34]. Pulse density is defined by 
the number of pulses sent by the sensor per  m2 (pulses 
m−2), and as pulse density increases the acquisition cost 
increases as well [32].

There has been a wide interest in understanding how 
reducing pulse density affects the accuracy of inven-
tory information derived from LiDAR data [34–37]. 
For instance, a study conducted in a Douglas-fir planta-
tion in South Island, New Zealand, found that the preci-
sion of models to predict forest attributes, such as mean 
height, volume and mean diameter at breast height (DBH), 
remained stable until densities of 10 pulses m−2 were culled 
to 2–3 pulses  m−2 [38]. Moreover, they also found that 
for the scenario where the DTM created from high pulse 
density was used to height normalize a downscaled point 
clouds for corresponding LIDAR-derived metrics, little 
change in the precision of regression models was found 
until pulse densities of 0.2–0.04 pulses m−2 were reached 
[38]. In mixed conifer forest in Washington state, USA, 
model precision was more affected by sample plot size than 
pulse density [39]. In mixed conifer-hardwood in Canada, 
pulse density could be reduced from 3.2 to 0.5 pulses m−2 
with little effect on the quality of inventory results [40].

Besides the effect of pulse density on forest attribute 
prediction, there is also interest in understanding how cell 
size combined with pulse density affects the prediction of 
AGC at the stand level. Most LiDAR studies have been 
mapping forest attributes at stand level with grid cell size 
similar to the size of the sample plots used for calibrating 
the models [19, 22, 37], which is the general recommenda-
tion [42]. However, the shapes of the inventory plots are 
usually different from the cell shapes utilized in the pre-
diction maps [43] that are normally square. It seems that 
at high pulse density, it would be advantageous to map 
forest attributes with higher spatial precision; i.e., at a 
finer grid resolution than the plot size, especially in Euca-
lyptus plantation, where the trees are planted in a grid and 
in most cases are hybrid clones. However, it is not clear 
how different grid cell sizes could influence stand level 
forest attributes estimates due to the degree of variabil-
ity within stands and how LiDAR predictions are derived 
within a cell [43]. For instance, a study evaluating the 
influence of six prediction cell sizes (2, 4, 10, 25, 50, and 
100 m squares) and two prediction methods (parametric 
vs. non-parametric) on LiDAR-derived stand-level esti-
mates of total volume found not trend of smaller cell sizes 
producing lower values of volume, while larger cell sizes 
tended to give higher estimates [43].

Understanding the combined influence of pulse den-
sity and grid cell sizes on AGC prediction and mapping 
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allows us to understand how well AGC estimates can 
be compared over time, as LiDAR technology and flight 
characteristics vary. Although the effects of LiDAR pulse 
density on the prediction accuracy of forest attributes 
has been widely investigated in boreal and temperate 
forests [33–36, 38–40], no studies have been conducted 
in fast-growing plantations with the goal of assessing the 
combined effect of pulse density and grid cell size on pre-
dicting and mapping aboveground carbon. Therefore, the 
aim of this study was first to predict AGC in eight fast-
growing Eucalyptus plantations in southeast Brazil using 
metrics derived from LiDAR with pulse densities of 5 and 
10 pulses m−2; and second, to assess the combined effect 
of these two pulse densities and grid cell sizes on AGC 
predictions at plot and stand levels. We hypothesized 
that due to the high homogeneity of this type of planta-
tion, LiDAR data with a density of 5 pulses  m−2 would 
provide AGC prediction accuracies similar to those from 
LiDAR data with a density of 10 pulses m−2, at grid cell 
sizes ranging from 5 to 20 m.

Methods
Study area description
The study area consisted of eight farms located within 
the Paraíba Valley in the state of São Paulo, Brazil (Fig. 1). 
The climate of the region is characterized as humid 

subtropical, with dry winters and hot summers [41]. 
Mean annual precipitation is  ~1200  mm; mean tem-
perature ranges from a minimum of 17.1 °C in the cold-
est month (July) to a maximum of 23.9 °C in the hottest 
month (February). The topography in the selected plan-
tations is complex with high relief, ranging from 578 
to 1310  m in elevation. The plantations contain hybrid 
clones of two Eucalyptus species, Eucalyptus grandis W. 
Hill ex Maid and Eucalyptus urophylla S.T. Blake. The 
plantations are managed by Fibria Celulose S/A, a pulp 
company. Stand age across the farms was variable and 
ranged from 3 to 8  years. All the trees were planted in 
3  m between rows and 2  m tree within a row (1667 
trees per ha).

Field data collection
A total of 136 circular plots of 400 m2 each were estab-
lished across the eight farms (Site ID, Table 1) for stand 
measurement during the months of January and March 
of 2012. All plots were georeferenced with a geodetic 
GPS with differential correction capability (Trimble 
Pro-XR). Sample plot centers were geolocated with a 
horizontal error of up to 10  cm. In each plot, all trees 
were measured for diameter at breast height (DBH; cm) 
and a random subsample (15%) of trees for maximum 
height (Ht; m). For trees in the plot that were not directly 

Fig. 1  Location of the study area in the State of São Paulo, Brazil. The stars indicate the location of the Eucalyptus plantations
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measured for Ht, the inventory team of Fibria Celulose 
S/A company predicted heights from hypsometric mod-
els, which use DBH as the predictor of Ht. For mapping 
validation purpose, trees were sub-sampled in square 
sub-plots of 25 m2 (5 ×  5 m), 100 m2 (10 ×  10 m) and 
225  m2 (15 ×  15  m) located at the center of each plot. 
The total aboveground carbon—AGC (Mg.tree−1) for the 
plots and sub-plots was obtained through the allometric 
model according to [15], employing as independent vari-
ables the logarithm of DBH and the Ht, and as dependent 
variables the AGC, as shown in the equation below:

 where: DBH is tree diameter over bark at breast height 
(1.37 m) in cm; Ht is tree height (m). The AGC model has 
adjusted coefficients of determination (Adj.R2) of 0.97, 
absolute and relative root mean squared errors (RMSE) 
of 4.57 kg tree−1 and 12.38%, respectively. The ln (AGC) 
was back transformed to natural scale, and multiplied by 
a correction factor of 1.03 [exp (0.5 × MSE)] to remove 
the bias added by the log transformation. The summed 
AGC stock of all trees within the plots and sub-plots was 
then divided by the plot and sub-plot area to calculate 
the AGC at plot-level in Mg.ha−1. The summary statistics 
of AGC stocks (Mg.ha−1) measured at plot-level in the 
farms evaluated are presented in Table 1.

LiDAR data acquisition and data processing
LiDAR data were obtained with a Riegl LMS-Q680I 
sensor mounted on a Piper Seneca II aircraft during 
the months of January and March of 2012. Data were 
acquired subsequently with pulse densities of 5 and 
10 pulses m−2; the characteristics and precision of the 
LiDAR data are listed in Table 2. LiDAR data processing 
consisted of several steps that ingested the LiDAR point 
cloud data and provided two major outputs: the digital 

ln(AGC) = −2.87+ 1.95× ln(DBH)+ 0.44 × ln(Ht)

terrain model (DTM) and the LiDAR-derived canopy 
structure metrics.

LiDAR data processing for both pulse densities occurred 
with the following sequence of steps using FUSION/LDV 
toolkit software [44]. (I) Ground returns were classified 
using a filtering algorithm adapted from [45] based on lin-
ear prediction [46]. (II) Digital Terrain Models (DTMs) of 
1 m spatial resolution were then developed using the clas-
sified ground returns. (III) Normalized LiDAR point clouds 
were obtained by subtracting the DTM elevation from each 
LiDAR return. (IV) Normalized point clouds were subset 
within each of the 136 sample plots, and then structure 
metrics were computed for each plot using only all returns 
above 2  m to remove the returns not belonging to tree 
crowns (e.g., hits on near-ground shrubs, forbs, grasses, 
etc.). (V) To evaluate the effect of grid cell size on the AGC 
prediction at stand level, we computed LiDAR metrics at 
grid cell sizes of 5, 10, 15, and 20 m. From the point cloud, 
it is possible to generate many LiDAR metrics, however, 
we generated only those metrics that have been frequently 
used as candidate predictors for forest attribute modeling 
in other studies [15, 18–22, 29, 47]. Therefore, a total of 27 
LiDAR metrics calculated from all returns were considered 
for AGC modelling at the plot and stand levels (Table 3).

Table 1  Descriptive values of  the biometric parameters of  the network of  plots inventoried in  the study area (January 
of 2012)

SD standard deviation

Sites ID Area (ha) DBH (cm) Ht (m) AGC (Mg.ha−1) Age (years) N plots

Mean SD Mean SD Mean SD

F987 39.53 8.82 1.57 11.65 2.55 15.76 3.75 2.3 14

F986 94.16 12.73 0.76 18.60 1.45 45.45 6.19 3.3 21

F849 138.96 14.14 0.60 22.16 1.54 62.71 6.69 4.7 26

F950 86.72 13.73 0.80 21.46 1.39 62.97 9.81 5.5 17

F184 58.34 14.57 0.70 23.74 1.19 64.59 6.81 5.9 14

F166 84.35 14.59 0.95 24.17 1.38 69.76 9.77 6.1 17

F948 79.33 13.70 1.20 23.29 1.68 60.42 13.12 6.8 12

F634 84.80 15.26 1.20 25.24 2.35 73.75 9.87 8.0 15

Table 2  LiDAR flight characteristics

Parameter Value

Average flight height 422.94 m

Pulse density 5 and 10 pulses m−2

Pulse frequency 400 kHz

Scan angle ±45º

Laser wavelength 1055 nm

Average aircraft speed 57 m/s (205.20 km/h)

Horizontal precision 0.1–0.15 m (1.0 sigma)
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Random forest modeling
We used the random forest package [48, 49] in R [50] to 
create random forest (RF) models for predicting AGC at 
the plot and stand levels from the LiDAR dataset of 5 and 
10 pulses m−2 (RF5 and RF10). In the analysis, we defined 
the number of classification trees (ntree) as 1000, and 
for the number of variables randomly (mtry) sampled as 
candidates at each split, we used the default value, which 
for regression is defined as p/3, where p is the number 
of covariates. For the remaining parameters, we used the 
default values, which are all defined in [50] as well.

The selection of the best LiDAR metrics to be included 
in the models was performed in two steps. First, even 
though highly correlated variables won’t cause multi-col-
linearity issues in RF, Pearson’s correlation (r) was used 
to identify highly correlated predictor variables (r > 0.85) 
as presented in [29] and [15, 47]. If a given group (2 or 
more) of LiDAR metrics were highly correlated, we 
retained only one metric by excluding the others that 
were most highly correlated with the retained metrics. 

Second, we identified the most important metrics based 
on the Model Improvement Ratio (MIR), a standardized 
measure of variable importance [51, 52]. MIR scores are 
derived by dividing raw variable important scores (output 
from RF) by the maximum variable importance score, 
so that MIR values range from 0 to 1. MIR scores allow 
for variable importance comparisons among different RF 
models. For each of the two AGC models, we ran 1000 
iterations of RF that included the  <0.85 correlated pre-
liminary set of LiDAR metrics to create distributions of 
MIR for each metric. Running 1000 iterations of RF pro-
duced consistent MIR distributions and avoided unnec-
essary processing time. To create parsimonious models, 
we reserved metrics for final RF models that were con-
sistent and exhibited the highest mean MIR values.

The accuracy of estimates for each model was evaluated 
in terms of percentage of variation explained (Pseudo-R2) 
in the RF models, Root Mean Square Error (RMSE), and 
Bias (both absolute and relative) computed by the linear 
relationship between observed and predicted AGC:

where n is the number of plots, yi is the observed value 
for plot i, and ŷi is the predicted value for plot i. Moreo-
ver, relative RMSE and biases were calculated by divid-
ing the absolute values (Eqs.  1, 2) by the mean of the 
observed AGC. We defined acceptable model precision 
and accuracy as a relative RMSE and Bias of ≤15% to 
have a model precision and accuracy higher than or equal 
to the conventional forest inventory standard in fast-
growing Eucalyptus forest plantations in Brazil [14, 47].

The performance of the RF models to predict AGC was 
also evaluated by means of a leave-one-out cross-valida-
tion (LOOCV) strategy [e.g. 22, 49]. Statistical equiva-
lence tests were employed [53, 54] to assess whether the 
AGC predictions were statistically similar at (i.e., equiva-
lent; p value  >0.05) to the field-based AGC stocks. Fol-
lowing [55], we employed a regression-based equivalence 
test for intercept equality to 0 (i.e., the mean of predicted 
AGC is equal to the mean of the field-based AGC) and 
slope equality to 1 (i.e., if the pairwise, predicted and 
observed AGC are equal, the regression will have a slope 
of 1). A description of equivalence tests can be also found 
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)2

∑n
i=1

( y
n − yi

)2

]

(2)RMSE =

√

∑n
i=1

(

yi − ŷi
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Table 3  LiDAR-derived canopy height metrics considered 
as candidate variables for predictive AGC models [43]

Metric Description

HMIN Minimum canopy height

HMAX Maximum canopy height

HMEAN Mean canopy height

HMAD Median canopy height

HSD Standard deviation of canopy height

HSKEW Skewness of canopy height

HKURT Kurtosis of canopy height

HVAR Variance of canopy height

HCV Coefficient of variation canopy height

HMODE Mode canopy height

H01TH 1st percentile of canopy height

H05TH 5th percentile of canopy height

H10TH 10th percentile of canopy height

H20TH 20th percentile of canopy height

H25TH 25th percentile of canopy height

H30TH 30th percentile of canopy height

H40TH 40th percentile of canopy height

H50TH 50th percentile of canopy height

H60TH 60th percentile of canopy height

H70TH 70th percentile of canopy height

H75TH 75th percentile of canopy height

H80TH 80th percentile of canopy height

H90TH 90th percentile of canopy height

H95TH 95th percentile of canopy height

H99TH 99th percentile of canopy height

CR Canopy relief ratio [(HMEAN-HMIN)/(HMAX-HMIN)]

COV Canopy cover (percentage of first return above 1.30 m)
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in the ‘equivalence’ package in R [56], and examples of 
equivalence plots in LiDAR studies can be found in [15, 
29, 45, 53, 55]. We also computed RMSE, Bias and the 
adjusted Coefficient of determination (Adj.R2) from the 
observed and predicted AGC from LOOCV. Finally, the 
effects of pulse density of the AGC predictions at the 
plot-level were investigated by the comparison of RMSE 
and Bias statistics across pulse densities.

Assessing effects of cell size on the AGC prediction 
and mapping at the stand level
As the study area is characterized by fast-growing plan-
tations, with tree hybrid clones equally spaced in the 
ground, we assumed that AGC maps could be generated 
with high spatial resolution, even though the model is 
based on a sample unit of 400 m2. Therefore, we applied 
the predictive model across the landscape to map AGC at 

spatial resolutions of 5, 10, 15, and 20 m, the last of which 
equates to the sample plot size of 400  m2. To evaluate 
the effect of grid cell size on the AGC map prediction, 
we extracted the AGC for each study site, and boxplots 
were generated to compare variability of AGC at the 
stand level containing various grid cell sizes. Moreover, 
from the maps we extracted predicted AGC within the 
plot and sub-plot boundaries to validate the maps by the 
comparison with reference AGC through an equivalence 
test [53–57]. An overview of the methodology is outlined 
in Fig. 2.

Results
Canopy profile of Eucalyptus plantation across age 
and LiDAR pulse density
The canopy profiles of Eucalyptus plantations across 
age and pulse density are represented in Fig.  3. 

Fig. 2  Procedure for predicting and mapping AGC from LiDAR and inventory plot data in Eucalyptus fast-growing plantations. Pearson’s correlation 
(r); Model Improvement Ratio (MIR); Leave-one-out cross-validation (LOOCV); Adjusted coefficient of determination (adj.R2); Percentage of variation 
explained (Pseudo-R2); Root mean squared error (RMSE). a The light gray panel corresponds to the LiDAR data processing step and b the gray panel 
correspond to the AGC modeling step
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LiDAR-derived height increased from early (Fig.  3a) 
to intermediate (Fig.  3b) and advanced ages (Fig.  3c). 
The variation in height was affected more by stand age 
than by pulse density. From a probabilistic perspec-
tive, the canopy height distribution remained the same 
using datasets with 5 and 10 pulses  m−2. The majority 
of LiDAR returns came from the upper canopy and the 
ground. However, as the stands approached harvest age 
(e.g.  ~7–8  years), the number of LiDAR returns in the 

0–5  m strata increased, indicating that the understory 
plant community increased in cover and height as the 
stand ages.

LiDAR metrics selection
Pearson’s correlation test (r) applied to the 27 candidate 
LiDAR metrics determined that 18 metrics were highly 
correlated (r > 0.85) for models using the 5 and 10 pulses 
m−2. For each dataset, we excluded all but one of the 

Fig. 3  LiDAR profiles of selected sample plots (400 m2) of Eucalyptus representative of early (i.e. 3.3 years) (a), intermediate (i.e. 5.5 years) (b) and 
advanced stages of development (i.e. 7.9 years) (c). (1) and (3) UTM easting profiles, (2) and (4) density plots. The colors represent height
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highly correlated metrics (H99TH), and the remaining 
not highly correlated metrics were used to build prospec-
tive models after MIR analysis. The not highly correlated 
LiDAR metrics derived from the 5 and 10 pulses m−2 data-
set were HVAR, HCV, HSKE, HKUR, H01TH, H05TH, 
H10TH, H99TH and COV. In both correlation matrices 
for the LiDAR metrics derived from the 5 and 10 pulses 
m−2, there were positively correlated metrics, such as 
H99TH and HVAR (r = 0.65; r = 0.66; p value < 0.001), 
and negatively correlated metrics, such as HCV and COV 
(r = −0.34; r = −0.30; p value <0.001), as shown in Table 4.

The remaining, not highly correlated LiDAR-derived 
metrics from 5 and 10 pulses m−2 were correlated against 
each other and metrics such as H99TH and HVAR where 
highly stable across pulse density, while COV and H01TH 
showed to be less stable. Pearson’s correlation between 
not highly correlated LiDAR-derived metrics from 5 and 
10 pulses m−2 are shown in the Table 5.

The most important LiDAR metrics for predicting 
AGC, both from the 5 and 10 pulses m−2 datasets, were 
H99TH and HVAR. In addition to these two metrics, 
the H10TH and HSKE were also the most consistently 

important metrics with higher MIR (Table  6). The vari-
ation in metrics selection was less affected by pulse den-
sity, and the LiDAR metrics selected according to MIR 
were the same for both pulse densities.

RF model fit and cross validation
Both RF models predicting AGC at plot level explained 
83% of the variation in AGC. Greater pulse density did 
not improve model fit, and both RF5 and RF10 models 
resulted in a very low RMSE and Bias, indicating high 
model prediction accuracy. In addition to the RMSE and 
Bias, r and adj.R2 did not significantly differ between the 
RF5 and RF10 models (Table 7).

The LOOCV analysis indicated that the RF5 and 
RF10 models were stable resulting RMSE of 13.61 and 
13.38% and Bias of −0.09 and −0.27% for the models 
derived from the 5 and 10 pulses m−2 datasets, respec-
tively. Moreover, the equivalence plots of observed ver-
sus predicted AGC both from the two models showed 
that predicted and observed AGC were equivalent (p 
values >0.05 for intercepts and p values <0.05 for slopes 
(Fig. 4a, b).

Table 4  Pearson’s correlation among the derived metrics from LiDAR pulse density of 5 (white) and 10 (gray) pulses m−2

The italic values indicates the values of r for metrics derived from 10 pulse m−2

*** p value <0.001; ** p value <0.01; * p value <0.05; p value <0.1

r HVAR HCV HKUR H01TH H05TH H10TH H99TH COV

HVAR – 0.84*** −0.50*** −0.44*** −0.50*** −0.30*** 0.66*** −0.21*

HCV 0.86*** – −0.73*** −0.58*** −0.79*** −0.66*** 0.25** −0.30***

HKUR −0.53*** −0.73*** – 0.50*** 0.83*** 0.70*** 0.06 0.10

H01TH −0.48*** −0.63*** 0.51*** – 0.53*** 0.26*** −0.13 −0.29***

H05TH −0.57*** −0.80*** 0.85*** 0.57*** – 0.75*** 0.17* 0.07**

H10TH −0.37*** −0.67*** 0.71*** 0.26** 0.74*** – 0.44*** 0.40***

H99TH 0.65*** 0.29*** 0.02 −0.18* 0.10 0.39*** – 0.49***

COV −0.30*** −0.34*** 0.12 0.08 0.25** 0.18* 0.45*** –

Table 5  Pearson’s correlation between selected metrics from LiDAR pulse densities of 5 and 10 pulses m−2

*** p value <0.001; ** p value <0.01; * p value <0.05; p value <0.1

r LiDAR-derived metrics (10 pulses m−2)

HVAR HCV HKUR H01TH H05TH H10TH H99TH COV

LiDAR-derived metrics (5 pulses m−2)

 HVAR 0.93***

 HCV 0.76*** 0.87***

 HKUR −0.38*** −0.55*** 0.69***

 H01TH −0.38*** −0.46*** 0.40*** 0.60***

 H05TH −0.37*** −0.60*** 0.60*** 0.36*** 0.68***

 H10TH −0.25** −0.55*** 0.61*** 0.17 0.61*** 0.90***

 H99TH 0.64*** 0.28*** 0.03 −0.17* 0.11 0.40*** 1.00***

 COV 0.14 −0.09*** 0.13 −0.19* 0.18* 0.45*** 0.50*** 0.13
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AGC predictions at plot‑level
There was no difference in the AGC prediction at plot 
level using LiDAR data of 5 or 10 pulses m−2. The RF 

model AGC predictions for the 136 sample plots ranged 
from 12.99 to 82.37 for RF5, and 12.75 to 82.83  Mg.
ha−1 for RF10. In general, for both RF5 and RF10 the 

Table 6  Mean of model improvement ratio (MIR) among derived metrics from LiDAR pulse density of 5 and 10 pulses m−2 
(N = 1000)

MIR > 0.3 are highlighted in italics

Pulse density (pulse m−2) LiDAR-derived metrics

H01TH H05TH H10TH H99TH HVAR HCV HKUR COV

5 0.04 0.13 0.47 1.00 0.68 0.21 0.17 0.02

10 0.03 0.11 0.33 1.00 0.52 0.13 0.07 0.07

Table 7  Random Forest models fitted for predicting AGC from LiDAR pulse densities of 5 and 10 pulses m−2

Pearson’s correlation coefficient (r); root mean square error (RMSE)

Pulse density LiDAR derived metrics Pseudo-R2 RMSE Bias

Mg ha−1 % Mg ha−1 %

5 H99TH + HVAR + H10TH 81.79 3.52 6.14 −0.03 −0.06

10 82.17 3.44 6.01 −0.01 −0.01

Fig. 4  Equivalence plots of observed vs. predicted AGC by the LOOCV5 and LOOCV10 (a, b); (n = 136). The equivalence plot design presented 
herein is an adaptation of the original equivalence plots presented by [52]. The grey polygon represents the ±25% region of equivalence for 
the intercept, and the red vertical bar represents a 95% of confidence interval for the intercept. The predicted AGC from the LOOCV5 and 
LOOCV10 models are equivalents to the reference for the intercept if the red bar is completely within the grey polygon. If the grey polygon is lower 
than the red vertical bar, the predicted AGC is biased low; and if it is higher than the red vertical bar, the predicted AGC is biased high. Moreover, the 
grey dashed line represents the ±25% region of equivalence for the slope, and if the green vertical bar is contained completely within the grey dashed 
line, the pairwise measurements are equal. Red and green bars are wider than the region outlined by the grey dashed lines indicates highly variability 
predictions. The white dots are the pairwise measurements, and the solid line is a best-fit linear model for the pairwise measurements. The light grey 
dashed line represented the relationship 1:1
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AGC values were slightly overestimated during early 
and advanced stand ages, and slightly underestimated 
at intermediate ages. The Eucalyptus plantations con-
taining younger stands showed the lowest AGC values 
(i.g. IDs F987 and F986), and advanced age stands con-
tained the highest AGC stocks (i.g. IDs F166 and F634) 
(Fig. 5).

Effect of the pulse density and cell size on the AGC 
prediction and mapping at stand level
The variation of the predicted AGC at stand level, and 
across cell size and pulse density is presented in Fig.  6. 
Grid cell sizes higher than 5 m did not significantly affect 
AGC prediction at stand level. Even though the variabil-
ity of AGC slightly decreased from 5 to 20 m cell size, we 
observed that in most of the sites, the AGC variability 
was similar in the maps with spatial resolution coarser 
than 5 m.

For each sample plot we extracted the predicted AGC 
from the maps. Equivalence plots indicated that the 
observed and predicted AGC were equivalent for the 
maps with all grid cell sizes (p values >0.05 for intercepts 
and p values  <0.05 for slopes). RMSEs and Bias ranged 
from 11.01 to 12.3% and −0.37 to 0.87%, and showed 

lower values in the maps with cell size of 5  m (Fig.  7). 
Although the observed and predicted AGC values were 
equivalents at spatial resolution of 5 m for both 5 and 10 
pulses m−2, the maps are overestimating AGC in young 
stands (e.g. “F987”) and underestimating AGC in older 
stands (e.g. “F634”).

Discussion
Forest managers are seeking new management strate-
gies that integrate forest, industry and market goals that 
maximize financial return while ensuring sustainability 
in the forest production chain [14]. The carbon credit 
market has created optimistic prospects for expansion of 
the Brazilian forest sector. Although this market seems 
attractive, there are few studies available with carbon 
stock estimates for planted forests [15]. In this study, we 
evaluated the combined effect of pulse density and grid 
size on AGC prediction at plot and stand levels in a fast-
growing Eucalyptus plantation. A significant amount 
of work has been done to evaluate the effect of LiDAR 
pulse density for forest inventory modeling. However, 
less attention has been given to the influence of the cell 
size used to generate stand-level maps of forest attributes 
[43].

Fig. 5  Observed versus predicted AGC by the RFs and LOOCVs for each plantation in the study area. Black dots represent averages and vertical bars 
represent standard deviations of AGC
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Accurate and timely measurements of AGC are critical 
for understanding the structure and function of terrestrial 
ecosystems, as well as sustainable forest resources man-
agement and carbon accounting [29]. Eucalyptus planta-
tions are a major carbon sink compared to others types of 
plantations, efficiently transferring atmospheric carbon 
into forest biomass and soil [10, 11]. The need to increase 
the accuracy and the spatial coverage of carbon account-
ing in these types of ecosystems has economic, politic and 
scientific rationales [31]. Airborne LiDAR can acquire 

tree-dimensional information of all eucalyptus trees at a 
high spatial resolution in a short time [15], and whether 
there is benefit to using LiDAR for forest inventory 
depends in large part on characteristics specific to each 
forest [35]. The results presented in this current study 
provide a validation of plot and stand-based measure-
ments of AGC. LiDAR has been shown to be a powerful 
technology for AGC prediction in Eucalyptus plantations, 
and our results have demonstrated that highly accurate 
estimates of AGC can be achieved using LiDAR data.

Fig. 6  Predicted AGC at stand level. The white and gray boxplots represent the AGC predicted from 5 and 10 pulses m−2, respectively
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Our results show that a LiDAR pulse density of 
5  pulses  m−2 provides similar AGC prediction accu-
racy to that using a dataset with 10 pulses m−2 in fast-
growing eucalyptus plantations. Previous studies have 
demonstrated similar effect of pulse density in forest 
attribute estimation. For example, [21] found that pulse 
densities could be reduced from 1.13 to 0.25 pulses m−2 
with little effect on the quality of the forest inventory 
results in stands dominated by Norway spruce (Picea 
abies L. Karst.) and Scots pine (Pinus sylvestris L.). [35], 
whose objective was quantifying the effects of LiDAR 
pulse density and sample size on forest attributes pre-
diction from LiDAR-derived metrics, found that model 
precision was more affected by sample plot sizes than 
by pulse density in mixed conifer forest in Washington 
state, USA. In a remnant forests in the rapidly urban-
izing region of Charlotte, North Carolina, USA, LiDAR 
point density was responsible for a biomass prediction 
difference of 11.5% when the pulse density was down-
scaled from 100 to 1% [58]. The statistical parameters 
adj.R2, RMSE and Bias presented in this study for the 
evaluation of AGC models are within the range reported 
by these other studies [33, 38, 47], though it is difficult to 
make a direct comparison due to differences in LiDAR 
sensors, pulse density testes, forest types and ground 
data collection.

LiDAR derived metrics, such as height percentiles, 
have been shown to be the most important LiDAR pre-
dictors of forest attributes in Eucalyptus plantations 
[15, 26, 47, 59]. In this study, the H99TH, H10TH, and 
HVAR were the most useful predictor variables for AGC 
prediction for the models derived from datasets of 5 and 
10 pulses m−2. These selected LiDAR metrics succinctly 
described the 3-dimensional canopy structure by captur-
ing the majority of variation contained in the point cloud. 
In particular, H99TH captured canopy top height, and 
HVAR captured the canopy height variation of Eucalyp-
tus stands. Also, the H99TH and HVAR were the most 
stable LiDAR-derived metrics when compared across 
pulse densities, accounting for a positive and strong 
linear correlation of r =  1 (H99TH5 ×  H99TH10) and 
r = 0.93 (HVAR5 × HVAR10).

The most accurate method of estimating AGC in Euca-
lyptus plantation is to physically sample it in the field. In 
a conventional inventory, one sample plot (300–500 m2) 
per each 10 or 15 ha is normally measured with a goal of 
achieving a maximum acceptable RMSE of 10–15% [60]. 
However, this type of measurement over large areas is 
severely limited by cost and time. Approaches for deriv-
ing AGC information based on LiDAR data are of great 
utility and interest; in this study, we showed that airborne 
LiDAR with pulse densities of 5 pulses m−2 can be used 

Fig. 7  Equivalence plot of the observed and predicted AGC at stand level for the RF5 (a) and RF10 (b); (n = 136). The numbers 5, 10, 15, and 20 m 
represent the grid cell sizes. The description of equivalence plot is presented in the caption of Fig. 4
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to predict AGC over large areas with RMSE and Bias 
equal to or less than in a conventional inventory. In this 
study, we achieved the RMSE goal of <15% established in 
the Methods section.

AGC maps are useful for forest management because 
they show the distribution of the AGC stock across the 
whole area. In theory, as spatial resolution increases, the 
higher is the probability to detect finer details and vari-
ability in forest stands. In this study, we found that AGC 
maps with spatial resolution ranging from 5 to 20 m show 
the same variability of AGC at stand level, indicating that 
in a fast-growing Eucalyptus plantation it is possible to 
map AGC in high detail even though the model was fitted 
using sample plots with larger sizes than the grid cell size 
used for mapping. However, LiDAR metrics computed in 
a grid cell of 5 m captured finer details of forest structure 
variability then those computed in a grid cell of 20  m; 
therefore, maps overestimated AGC in young stands and 
underestimated AGC in older stands, because the models 
calibrated from tree data collected within plots of 400 m2 
were not able to capture the forest variability at this fine 
resolution. The influence of the cell size used to generate 
forest attributes from LiDAR data, such as AGC, has not 
analyzed intensely at stand-level yet [43], and the range 
of examined cell sizes was limited [61, 62]. Whereas the 
differences among the cell sizes were almost negligible in 
[61], the effects of cell sizes on estimates was highlighted 
in [43], especially when comparing extreme cell sizes (2 
and 100 m). These results concur with ours at resolutions 
between 5 and 20 m.

The maps with grid cell size of 5  m generated from 
5 and 10 pulses  m−2 illustrated the broad similarities 
of AGC patterns across landscapes (Fig. 8). AGC stock 
was greatest in plantations with advanced ages (e.g. 
F634). AGC was more variable in the young plantations 
(such as F986 and F987). While the site F987 (Fig. 8a1, 
a2) showed relatively large variability in AGC, the map 
prediction was not affected by the LiDAR pulse den-
sity. Due to the large area and distance between the 
plantations, the LiDAR data at 5 and 10 pulses m−2 at 
the same site were not collected on the same day. At 
the time of the first survey to collect LiDAR data with 
5 pulses m−2, a small stand, not studied herein, 8 years 
old at site F987 was not completely harvested, as indi-
cated by the red spot in Fig. 8a1. On the other hand, the 
red spot was not detected in Fig.  8a2, because 1 week 
later, at the time of the second survey to collect the 
LiDAR of 10 pulse m−2, the small stand was completely 
harvested.

Although the cost of LiDAR data acquisition was not 
a central objective that we evaluated in this study, it is 

nonetheless an important factor to consider. As already 
mentioned, pulse density has a strong influence on the 
acquisition cost of LiDAR data, and even though the cost 
for using LiDAR with high or low pulse density might be 
lower than the cost of a conventional inventory for AGC 
in fast-growing Eucalyptus plantations, as presented 
in [32], it will still be highly expensive for a large area. 
Although field-based carbon estimations remain nec-
essary for these purposes, integrating LiDAR remote 
sensing into carbon inventory schemes allows recovery 
of spatially-explicit AGC estimates across landscapes, 
while reducing the total costs and need for extensive 
field-based sampling [31]. In a conventional inventory, 
normally the variability of the forest attributes at stand 
level is not always known and therefore less studied [63]. 
In this study we mapped AGC at the landscape level 
with a spatial resolution of 5  m, so that it is now pos-
sible to compute and capture the variability of AGC at 
the stand level as well. Moreover, the estimates of AGC 
in the stands are helpful to determine how much carbon 
will be stored as forest products made from the timber 
after harvest.

Conclusion
The effect of LiDAR pulse density and grid cell size 
on prediction accuracy of AGC at plot and stand level 
has been evaluated and analyzed in this paper. First, 
we found that LiDAR measurements can be used to 
predict AGC across variable-age Eucalyptus planta-
tions with adequate levels of precision and accuracy 
using both 5 and 10  pulses  m−2. Second, we found 
that H99TH, H10TH, and HVAR metrics were the 
most important LiDAR metrics for modeling AGC 
in this study. Third, we found that 5 pulses  m−2 and 
grid cell size of 5, 10, 15 and m did not affect the AGC 
predicted accuracy at plot and stand level. Finally, we 
demonstrated that the spatial distribution of AGC 
stocks can be precisely mapped at a grid cell size of 
5 m using LiDAR pulse density of 5 pulses m−2, which 
can be used to provide key information for carbon 
sequestration in this type of ecosystem. Moreover, 
the promising results for AGC modeling in this study 
will allow for greater confidence in comparing AGC 
estimates with varying LiDAR sampling densities for 
Eucalyptus plantations and assist in decision making 
towards more cost effective and efficient forest inven-
tory modeling. Although this study presents results for 
assessing AGC in fast-growing eucalyptus plantations 
in Brazil, the framework presented herein can serve as 
a useful methodology, and we hope that the promising 
results for AGC modeling in this study will stimulate 
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further research and applications not just in Eucalyp-
tus forest plantation in southeast Brazil, but elsewhere 
as well.
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